If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+128t+112=0
a = -16; b = 128; c = +112;
Δ = b2-4ac
Δ = 1282-4·(-16)·112
Δ = 23552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23552}=\sqrt{1024*23}=\sqrt{1024}*\sqrt{23}=32\sqrt{23}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-32\sqrt{23}}{2*-16}=\frac{-128-32\sqrt{23}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+32\sqrt{23}}{2*-16}=\frac{-128+32\sqrt{23}}{-32} $
| 225(x−23)^2=1 | | 5u+1=26 | | 21/6=35/p | | F(x)=x^2/x^2+1 | | 5.4=x/1.5+2 | | 4x^2+24=28 | | p/8=p+3/10 | | 9j-8=+9j | | 4x^2+24=24 | | X+x+6=80 | | 5.4=x/1.5+3 | | 55.5+14.40x=91.50+10.80x | | 5/6b=420 | | -4.5=-0.5x-7.1 | | 9t+10=6t–8 | | 2c=6c-8 | | 4-6=8-h | | 0.02x=10 | | 2x-12=x/5+3/5 | | 1/3(27x-18)=6x | | 6x+6=-4x+76 | | 400+67x=87x | | -24=x=8 | | 400+67x=87 | | 12/11=r/12 | | 8x^2+48=176 | | X+0.5x=135 | | -12x/5=60/7 | | 148+15x=160+11x | | 7x-10=3x+12 | | -30=-6(m+11) | | 2,3x+8,4=3,1x+37,2 |